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Abstract. This paper presents our contribution regarding two imple-
mentations of the ROLLO-I algorithm, a code-based candidate for the
NIST PQC project. The first part focuses on the two implementations
of the ROLLO-I algorithm, and the second part analyses a side-channel
attack and the associated countermeasures. The first implementation
benefits from existing hardware by using a crypto co-processor to speed-
up operations in F2m . The second one is a full software implementation
that is publicly available on GitHub. Finally, the side-channel attack al-
lows us to recover the key with only 79 ciphertexts for ROLLO-I-128. We
propose counter-measures in order to protect future implementations.

Keywords: post-quantum cryptography, side-channel attacks, ROLLO-I cryp-
tosystem

Introduction

Today, 26 candidates are still under study for the standardization campaign
launched by the National Institute of Standards and Technology (NIST) in 2016.
Amongst these submitted candidates, 8 signature schemes based on lattices and
multivariate and 17 public-key encryption schemes or key-encapsulation mech-
anisms (KEMs) are basing their security on codes, lattices, and isogenies. In
addition to that, one more signature scheme based on a zero-knowledge proof
system has also been submitted.
In this paper, we focus our analysis on submissions based on codes. The firsts
cryptosystems based on codes (e.g McEliece cryptostem) uses keys far too large
to be usable by the industry. The development of new cryptosystems based on
different codes as well as the introduction of codes embedded with the rank
metric have resulted in a considerable reduction of key sizes and thus reach key
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sizes comparable to those used in lattice-based cryptography. Despite the evolu-
tion of research in this field, some post-quantum cryptosystems submitted to the
NIST PQC project require a large number of resources. Notably concerning the
memory which becomes binding when we have to implement the algorithms into
constrained environments as in microcontrollers. It is then hardly conceivable to
imagine that these cryptosystems may replace the ones used today in chips. In
that purpose, we decided to study the real cost of a code-based cryptosystem im-
plementation. This study is essential to prepare the transition to post-quantum
cryptography. For this study, we decided to perform two implementations, the
first one on a microcontroller featuring a crypto co-processor and a second one
which is full software.
One of the main criteria for the selection of the cryptosystem has been the
RAM available on the microcontroller to run cryptographic protocols. We first
decided to compare the size of elements manipulated in submitted code-based
cryptosystems. The respective sizes are reported in Table 1. Three others code-
based cryptosystems in round 2 Classic McEliece, LEDAcrypt and NTS-KEM,
not listed in Table 1, use very large key sizes and thus were not taken into
account in our study.

Parameter
Algorithm BIKE HQC RQC ROLLO

scheme number I II III I II III
public key 8,188 4,094 9,033 14,754 3,510 947 2,493 2,196
secret key 548 548 532 532 3,510 1,894 4,986 2,196
ciphertext 8,188 4,094 9,033 14,818 3,574 947 2,621 2,196

Table 1. Size of elements in bytes for code-based cryptosystems (security level 5)

The selection of a microcontroller with only 4 kB of RAM that can be found
on the market led us to choose the ROLLO-I submission. As seen in Table 1,
the total size of the parameters is the smallest one when we choose ROLLO-
I and consequently, this is the algorithm that needs the smallest amount of
RAM. As operations on ROLLO-II and ROLLO-III are similar, they should be
integrated quickly. To provide a first secure implementation of ROLLO-I, we
propose countermeasures against the side-channel attack we introduced.

Our contribution. In this paper, we present two practical implementations of
ROLLO-I, the first one consisting in full software implementation and the second
one is embedded in a microcontroller in which 4 kB of RAM are dedicated to
cryptographic data.
We finally give a first study on the security of ROLLO-I against side-channel
attacks and implement countermeasures against this attack.

Organization of this paper. This paper is organized as follows: we start with some
preliminary definitions and present the ROLLO-I cryptosystem in Section 1,
then we present in Section 2 the memory-optimized implementations and in
Section 3.1, we finally demonstrate a first side-channel attack on ROLLO-I and
present associated countermeasures.
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1 Background

In this section, we give some definitions to explain the Low-Rank Parity Check
(LRPC) codes which have been first introduced in [1]. For more details, the
reader is referred to [2,3]. For fixed prime numbers m and n, we denote by:

q a power of a prime number
Fq the finite field with q elements
Fqm the vector space that is isomorphic to Fq[x]/(Pm), with Pm an

irreducible polynomial of degree m
Fn
qm a vector space isomorphic to Fqm [X]/(Pn), with Pn an irreducible

polynomial of degree n
v an element of Fn

qm

M(v) the matrix (vi,j) 1≤i≤n
1≤j≤m

Let k, n be two integers such that k ≥ n. A linear code over Fqm of length n and
dimension k is a subspace of Fn

qm . It is denoted by [n, k]qm .
A linear code can be represented by its generator matrix G ∈ Fk×n

qm as

C = {x.G,x ∈ Fk
qm}.

The code C can also be given by its parity check matrix H ∈ F(n−k)×n
qm as

C = {x ∈ Fn
qm : H.xT = 0}.

The matrix sx = H.xT is called the syndrome of x.
ROLLO cryptosystem is based on codes embedded with rank metric over Fn

qm .
In rank metric, the distance between two words x = (x1, · · · , xn) and y =
(y1, · · · , yn) in Fn

qm is defined by

d(x,y) = ‖x− y‖ = ‖v‖ = Rank M(v),

withM(v) = (vi,j) 1≤i≤n
1≤j≤m

and ‖v‖ is called the rank weight of the word v = x−y.

The rank of a word x = (x1, · · · , xn) can also be seen as the dimension of its
support Supp(x) ⊂ Fqm spanned by the basis of x. In other words, the support
of x is given by

Supp(x) = 〈x1, · · · , xn〉Fq
.

The authors of [3] introduced the family of ideal codes that allows them to reduce
the size of the code’s representation, the associated generator matrix is based on
ideal matrices.
Given a polynomial P ∈ Fq[X] and a vector v ∈ Fn

qm , an ideal matrix generated
by v is an n× n square matrix defined by

IM(v) =


v

Xv mod P
...

Xn−1v mod P

 .
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An [ns, nt]qm-code C, generated by the vectors (gi,j)i∈[1,··· ,s−t] ∈ Fn
qm , is an ideal

code if its generator matrix under systematic form is given by

G =

 IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)

 .

In [3], they restrain the definition of ideal LRPC (Low-Rank Parity Check) codes
to (2, 1)-ideal LRPC codes that they used in ROLLO cryptosystem.
Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be two vectors
of Fn

qm , such that Supp(h1,h2) = F , and P ∈ Fq[X] be a polynomial of degree
n. An [2n, n]qm code C is an ideal LRPC code if its parity check matrix is of the
form

H =

IM(h1)
T IM(h2)

T

 .

Hereafter, we will focus on ROLLO-I submission that presents small parameter
sizes compared to ROLLO-II and ROLLO-III (see Table 1).

ROLLO-I scheme

The submission of ROLLO-I is a Key Encapsulation Mechanism (KEM) com-
posed of three probabilistic algorithms: the Key generation (Keygen), Encapsu-
lation (Encap), and Decapsulation (Decap) detailed in Table 4. During the de-
capsulation process, the syndrome of the received ciphertext c is first computed,
then the Rank Support Recovery (RSR) algorithm is performed to recover the
error’s support. The latter is explained in Appendix 9 .

The fixed parameter sets given in Table 3 allow achieving respectively 128, 192,
and 256 bits level of security according to NIST’s security strength categories
1, 3, and 5 [4]. As described in Section 1, the parameters n and m correspond
respectively to the degrees of irreducible polynomials Pn and Pm implied in the
fields Fq[x]/(Pm) and Fqm [X]/(Pn). We note that for the three security levels,
q is set to 2. The parameters d and r correspond respectively to the private key
and error’s rank.

Algo.
Param.

d r Pn Pm Security level (bits)

ROLLO-I-128 6 5 X47 +X5 + 1 x79 + x9 + 1 128
ROLLO-I-192 7 6 X53 +X6 +X2 +X + 1 x89 + x38 + 1 192
ROLLO-I-256 8 7 X67 +X5 +X2 +X + 1 x113 + x9 + 1 256

Table 3. ROLLO-I parameters for each security level
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Alice Bob

KeyGen
Generate a support F of rank d
Generate the private key
sk = (x,y) from the support F
Compute the public key
h = x−1 · y mod Pn

h−−−→ Encapsulation
Generate a support E of rank r
Pick randomly two elements
(e1, e2) from the support E
Compute the cipher
c = e2 + e1 · h mod Pn

Derive the shared secret
Decapsulation c←−−− K = Hash(E)
Compute the syndrome
s = x · c mod Pn

Recover error’s support
E = RSR(F, s, r)
Compute the shared secret
K = Hash(E)

Table 4. ROLLO-I KEM protocol

2 ROLLO-I implementations

We give in this section some details on the implementation of operations in
the rings F2[x]/(Pm) and F2m [X]/(Pn) required in ROLLO-I cryptosystem. The
implementations have been performed on 32-bit architecture systems.

2.1 Operations in F2[x]/(Pm)

The addition in F2[x]/(Pm) has been implemented with XORs between 32-bit
words. Thus, the three main operations to implement were the multiplication,
the modular reduction, and the inversion. For the latter, we chose the Euclidean
extended algorithm for binary polynomials described in [5] and given in Ap-
pendix A.

2.1.1 Modular reduction

Several modular reductions with parse polynomials are performed in the cryp-
tosystem, we then decided to use the same technique explained in [5] concerning
the reduction of binary trinomial with middle terms close to each other. Let
us take the example of ROLLO-I-128 and the modular reduction of an element
C = (c0, · · · , c156) obtained after a multiplication in F2[x]/(Pm). The reduc-
tion can then be performed on each 32-bit word composing C. Considering
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the reduction of the 4th word of C, C[3] that corresponds to the polynomial
c96x

96 + c97x
97 + · · ·+ c127x

127, we have:

x96 ≡ x17 + x26 mod Pm

...

x127 ≡ x48 + x57 mod Pm

Given the above congruences, we notice that the reduction of C[3] can be oper-
ated by adding two times C[3] to C as shown in Figure 1.

Fig. 1. Reduction of the 32-bit word C[3] modulo Pm(x) = x79 + x9 + 1

Based on this method, we implemented fast not generic modular reduction al-
gorithms (e.g Algorithm 1) for each security level.

Algorithm 1: Reduction modulo Pm(x) = x79 + x9 + 1

Input: polynomial c(x) of degree at most 156
Output: c(x) mod Pm(x)

1 C[2]← (C[4]� 6) ⊕ (C[4]� 15)
2 C[1]← (C[4]� 17) ⊕ (C[4]� 26) ⊕ (C[3]� 6) ⊕ (C[3]� 15)
3 C[0]← (C[3]� 17) ⊕ (C[4]� 26)

4 T ← C[2] & 0xFFFF8000

5 C[0]← C[0]⊕ (T � 15)
6 C[1]← C[1]⊕ (T � 6)
7 C[2]← C[2]⊕ (T � 22)
8 C[2]← C[2] & 0x7FFF

9 C[3], C[4]← 0
10 return C

2.1.2 Multiplication

Finally, for the multiplication, we used the left-to-right comb method with win-
dows of width 4 as described in [5, Algo. 2.36]. The left-to-right comb method is
based on the fact that if b(x).xi has already been computed for 0 ≤ i ≤ w − 1,
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with w a chosen width window, then b(x).xwj+i can be determined by adding j
zero w-bit words to the right of the vector representation of b. For each polyno-
mial a ∈ Fq[x]/(Pm), we have the associated vector form A = (a0, a1, · · · , am−1),
as we work in a 32-bit architecture, let Ai denotes the ith 32-bit word of A.
Considering the multiplication between two polynomials a, b ∈ Fq[x]/(Pm), the
first step consists in precomputing the products u(x)× b(x) for all polynomials
u of degree at most w − 1, in our case, 16 elements have been stored in a table
T . Let û denotes the integer associated to the polynomial u(x) (û = 0↔ u(x) =
0, û = 1↔ u(x) = 1, û = 2↔ u(x) = x, · · · , û = 15↔ u(x) = x3 + x2 + x+ 1),
we have then Tû = b(x)× u(x).
In the second step, each word Ai is first divided in t blocks of w coefficients, Ai,j

denotes then the jth block of 4 coefficients in Ai. Then, the element Tû is added
to the result element Rj .
Finally, if i is non zero, we multiply the polynomial R by xw, this amounts to a
shift of 32-bit words.

Algorithm 2: Polynomial multiplication using the left-to-right method
with a width window w

Input: Two polynomials a, b ∈ Fq[x]/(Pm)
Output: r(x) = a(x)× b(x)

// Step 1
1 For all polynomials u(x) of degree at most w − 1, compute Tû = b(x)× u(x)
2 R← 0
3 for i from (32/w)− 1 to 0 do
4 for j from 0 to dm/32e do
5 Let û = uw−1 · · ·u0 with uk the bit wi+ k of Aj .
6 Rj ← Rj ⊕ Tû

7 if i 6= 0 then
8 R← R.xw

9 return R

2.2 Operations in F2m [X]/(Pn)

In this section, mb represents the length in bytes of one coefficient in F2m .

2.2.1 Inversion

For the inversion, we adjusted Extended Euclidean algorithm given in Appendix A
to the ring F2m [X]/(Pn) as presented in Algorithm 3.
However, the implementation of this operation can be quite expansive in terms
of memory usage. During the execution of the Extended Euclidean algorithm,
we have in memory:

• the polynomial to be inverted Q;
• a copy of Q (in order to keep it in memory);



8 Authors Suppressed Due to Excessive Length

• the dividend;
• the two Bézout coefficients;
• three buffers used to performed intermediates operations (swap between

polynomials, results of multiplications).

Algorithm 3: Inversion in F2m [X]/(Pn)

Input: Q a polynomial in F2m [X]/(Pn)
Output: Q−1 mod Pn

1 U ← Q, V ← Pn

2 G1 ← 1, G2 ← 0
3 while U 6= 1 do
4 j ←− deg(U)− deg(V )
5 if j < 0 then
6 U ↔ V
7 G1 ↔ G2

8 j ← −j
9 lc_V ← Vdeg(V )−1 // leading coefficient of V

10 U ← U +Xj .(lc_V )−1.V
11 lc_G2 ← G2deg(G2)−1

// leading coefficient of G2

12 G1 ← G1 +Xj .(lc_G2)
−1.G2

13 return G1

A simple way to implement the Extended Euclidean algorithm is to allocate
the maximum memory size for each element. As each element can be composed
of n coefficients in F2m , we should have 8 × n × mb bytes required to com-
pute the inverse of a polynomial in F2m [X]/(Pn). Considering the parameters
of ROLLO-I-128, ROLLO-I-192 and ROLLO-I-256 the memory usage represents
respectively 4512, 5088, and 8576 bytes, thus exceeding the memory size avail-
able on the target microcontroller.
However, during the Extended Euclidean algorithm we notice that:

• the degree of the polynomial Q is at most n− 1 and the degree of the divi-
dend is n at the beginning of the process and decrease during the algorithm
execution.

• the degrees of two Bézout coefficients are 0 at the beginning and increase
during the process.

Thus, we decided to perform a dynamic memory allocation by allocating the
necessary memory space to each element and moving them during the inversion
process allowing us to reduce the memory usage to 2590, 2904 and 4864 bytes
respectively for ROLLO-I-128, ROLLO-I-192 and ROLLO-I-256.

2.2.2 Multiplication

The multiplication in Fn
2m is one of the most used operations of this cryptosys-

tem: it is involved in the computation of the public key, the cipher and the
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syndrome. The Schoolbook multiplication requires n2 multiplications in F2m ,
this can be reduced by implementing a combination of Schoolbook multiplica-
tion and Karatsuba method [6] as presented in Algorithm 7.

Let P = p0 + p1X and Q = q0 + q1X be two polynomials of degree 1. The result
of the product is

P ·Q = p0q0 + (p0q1 + p1q0)X + p1q1X
2.

Naively, we have to compute 4 multiplications and 1 addition. The Karatsuba
algorithm is based on the fact that:

(p0q1 + p1q0) = (p0 + p1)(q0 + q1)− p0q0 − p1q1.

The Karatsuba algorithm takes advantage of this method which leads the com-
putation of PQ to require only 3 multiplications and 4 additions.

Algorithm 4: Karatsuba multiplication
Input: two polynomials f and g ∈ Fn

2m and N the number of coefficients of f
and g

Output: f · g in Fn
2m

1 if N odd then
2 result ← Schoolbook(f ,g, N)
3 return result

4 N
′
← N/2

5 Let f(x) = f0(x) + f1(x)x
N
′

6 Let g(x) = g0(x) + g1(x)x
N
′

7 R1 ← Karatsuba(f0,g0, N
′
) // Compute recursively f0g0

8 R2 ← Karatsuba(f1,g1, N
′
) // Compute recursively f1g1

9 R3 ← f0 + f1
10 R4 ← g0 + g1

11 R5 ← Karatsuba(R3, R4, N
′
) // Compute recursively R3R4

12 R6 ← R5 −R1 −R2

13 return R1 +R6x
N′ +R2x

2N

The fourth step (line 4 - Algorithm 7) requires to divide the polynomial’s length
by 2, as consequence, we have to add a padding to the polynomials involved in
the multiplications with zero coefficients to make the number of coefficients of
the polynomials even.
Figure 2 provides the number of cycles depending on the polynomial length
required by the combination of Karatsuba and schoolbook method, we observe
that the cycles’ number is not strictly increasing, this is due to the division by
2 of the polynomial’s length involved in the method. Depending on the memory
available for a multiplication in F2m [X]/(Pn), we can then choose to add more
or less padding. For example, in ROLLO-I-128 with n = 47, we decided to
add one zero coefficient which induces 48 coefficients and allow us to reduce
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Fig. 2. Number of cycles required by Karatsuba combined with schoolbook multipli-
cation depending on the polynomial length

considerably the number of cycles; however, in ROLLO-I-192 with n = 53 we
have two possibilities:

• Pad the polynomials with 3 coefficients to reach 56 coefficients.
• Pad with 11 coefficients to lower the cost of multiplications in F2m .

The second possibility is about 10% faster but requires an additional memory
cost of 11× d89/32e × 4 = 132 bytes per polynomial. The first choice represents
then a good balance between memory and execution time.

2.2.3 Rank Support Recovery (RSR) algorithm

The RSR algorithm involves the computation of intersections between two sub-
spaces over Fn

2m .
Considering two sub-spaces U = 〈u0, u1, · · · , un−1〉 and V = 〈v0, v1, · · · , vn−1〉
and two vectors u = (u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1) in Fn

2m , the
intersection IU,V = U ∩ V can be computed by following the Zassenhaus algo-
rithm [7], described with the below steps:

• Create the block matrix ZU,V =

(
M(u) M(u)
M(v) 0

)
;

• Apply the Gaussian elimination on ZU,V to obtain a row echelon form ma-
trix;

• The resulting matrix has the following shape:

M(c) ∗
0 IU,V

0 0

,

with c = (c0, · · · , cn−1) ∈ Fn
2m .
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In the initial RSR algorithm given in Appendix 9, some pre-computations have
been performed to avoid the recalculation of some data. We can estimate the
average memory cost of these pre-computations: each Si is composed of rd coef-
ficients in F2m , thus, for the Si pre-computations, rd× d×mb bytes are needed.
Concerning the pre-computation of intersections, each composed of r coefficients,
we need to consider the memory usage induced by the Zassenhaus algorithm
described below. To be performed, the latter requires the writing in memory of
four Si, in other words 4rd×mb bytes. Furthermore, for these pre-computations,
the private key’s support (d coefficients) and the syndrome (rd coefficients) are
needed. Thus, supposing that we computed the last intersection between two Si,
the total memory cost should be:

Memorypre−computed = (rd× (d+ 5) + (d− 3)× r + d)×mb.

With this formula, we can predict that ROLLO-I-128 should required 4212 bytes
to store the pre-computations which is too high. In order to reduce the memory
cost, we grouped the two pre-computations by storing in memory at most three
Si and then directly computing two intersections as framed in Algorithm 5.

Algorithm 5: RSR (Rank Support Recover)
1 Input: F = 〈f1, · · · , fd〉 a Fq vector subspace of F2m , s = (s1, · · · , sn) ∈ Fn

2m

syndrome of an error e and r the rank’s weight of e
Output: Vector subspace E

2 Compute S = 〈s1, · · · , sn〉
// Recall that Si = f−1

i S
3 tmp1 ← S1

4 tmp2 ← S2

5 tmp3 ← S3

6 Compute S1,2 = tmp1 ∩ tmp2
7 for i from 1 to d− 2 do
8 Compute Si+1,i+2 = tmpi+1 ∩ tmpi+2

9 Compute Si,i+2 = tmpi ∩ tmpi+2

10 tmpi%3 ← Si+3

11 for i from 1 to d-2 do
12 tmp← S + F · (Si,i+1 + Si+1,i+2 + Si,i+2)
13 if dim(tmp) ≤ rd then
14 S ← tmp;

15 E ←
⋂

1≤i≤d

f−1
i · S

16 return E

By repeating the same above reasoning, the total memory cost should be:

Memorypre−computed = (8× rd+ (d− 3)× r + d)×mb.

In this case, ROLLO-I-128 should required 3132 bytes. Indeed, this method
allows us to save (d − 3) × r × d × mb bytes, the gains in memory for each
security level are presented in the Table 5.
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Algorithm Save bytes
ROLLO-I-128 1080
ROLLO-I-192 2016
ROLLO-I-256 4480

Table 5. Memory gains with the modified RSR algorithm

2.3 Results

In this section, we present the performance evaluation of proposed implementa-
tions regarding memory usage and execution time. Our implementations were im-
plemented in C. For performance measurements, we used IAR compiler C/C++
with high-speed optimization level and counted the cycles with the debugging
functionality of the IAR Embedded Workbench IDE [8].
ROLLO-I-128 and ROLLO-I-192 have also been implemented on an FPGA
Xilinx Virtex-II. The microcontroller which is based on a widely used 32-bit
ARM R© SecurCore R© SC300TMand has an embedded 32-bit mathematical crypto
co-processor to perform operations in GF (p) and GF (2m). The microcontroller
features 24 kB of RAM whose 4 kB are available to the cryptographic com-
putations, and a True Random Number Generator (TRNG). In our embedded
implementations, all the operations in GF (2m) take then advantage of the crypto
co-processor leading the embedded implementations ROLLO-I-128 and ROLLO-
I-192 to be faster than their full software versions as we can seen on Table 6 that
provides the number of cycles required by ROLLO-I for the different security
levels. The microcontroller running to 50 MHz, we also provided the time in
milliseconds.

Full software on SC300 On SC300 with co-processor
Security GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 cycles (×106) 15.47 1.99 4.31 8.68 0.55 3.75
ms 309 40.8 86.3 173.6 11 75

ROLLO-I-192 cycles (×106) 21.31 3.38 7.8 11.11 0.8 6.63
ms 426 67.6 156 222.2 16 132.6

ROLLO-I-256 cycles (×106) 39.92 6.62 15.54 ND ND ND
ms 798.5 132.5 310.8 ND ND ND

Table 6. Executing time of ROLLO-I

Table 7 gives the memory usage to perform the key encapsulation mechanism for
the three levels of security. The table highlights that the ROLLO-I-256 imple-
mentation exceed significantly the 4kB of RAM, so it could not be implemented
in our target.
To compute the memory usage, we also have to difference the full software im-
plementations and ones embedded in the microcontroller. For the latter, the
memory usage referring to the RAM required to perform the cryptosystem, the
keys being stored in the EEPROM (Electrically Erasable Programmable Read-
Only memory). In contrast, for the full software implementations that can be
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processed on any platform, the space required for keys have been taken into
account in the computation of the memory usage.

For the ROLLO-I implementation on a 32-bit architecture, an element inGF (qm)n

will be represented as n × dm/32e × 4 bytes. Considering this fact, the mem-
ory usage of ROLLO-I-128 and ROLLO-I-192 will only differ according to n,
indeed for ROLLO-I-128, m = 79 and for ROLLO-I-192, m = 89, we thus ob-
tain d79/32e = d89/32e = 3 32-bit words. Nevertheless, each element in GF (qm)
for ROLLO-I-256 requires one additional 32-bit word explaining the important
difference of memory usage between the higher security and the two lowers.
In order to reduce the memory used in the full software implementation, we
decided to not keep the two parts of the secret key. Indeed, as we notice in the
ROLLO-I cryptosystem (Table 4), the part y of the secret key is only used on
the key generation process. We can supposed that this part could be used to
prove the integrity of the other part x from the public key h. Thus, instead of
storing the part y, we decided to store the cyclic redundancy check (CRC) of
(x,y) leading us to keep the proof of integrity of x. The result of CRC is then
stored in a 32-bit word.

Full software Embedded

Security
Algo. GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 3,520 3,592 3,964 2,940 2,940 3,320
ROLLO-I-192 4,120 4,188 5,096 3,448 3,432 4,334
ROLLO-I-256 7,440 7,152 8,992 6,288 5,872 7,776

Table 7. Memory usage for ROLLO-I (in bytes)

To give a rough idea of ROLLO-I cryptosystem’s place in cryptography used to-
day, we decided to compare our implementation full software of ROLLO-I with
the Elliptic Curve Diffie-Hellman key exchange (ECDH) [9] implemented in the
same platform. To establish a shared secret between two entities, the ECDH
protocol required 2 scalars multiplications over E(Fq) that are executed in par-
allel by these two entities. In the case of ROLLO-I, the key agreement takes into
account the Encapsulation and Decapsulation processes.
Thus, Table 8 gives the performances of a key agreement for ECDH and ROLLO-
I. For the cost’s estimation of ECDH, we only considered the two scalar multi-
plications.

Security Algorithm Clock cycle (×106)
128 ROLLO-I-128 6.3

ECDH Curve 256 3.49
192 ROLLO-I-192 11.18

ECDH Curve 384 8.45
Table 8. Performance comparison between ROLLO-I and ECDH for two different
security levels.
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Table 8 highlights that ROLLO-I could be a realistic alternative to the current
key exchange schemes.

3 Side-channel attack on ROLLO-I

Side-channel attacks, were first introduced by Kocher in 1996 [10]. Amongst these
attacks, some of them are based on the exploitation of the leakage information
coming from a device executing a cryptographic protocol. An adversary is then
able to extract this information without having to tamper with the device.
In this section, we deal with chosen-ciphertext Simple Power Analysis (SPA)
attack which aims to reveal the key by identifying sequences of an algorithm
thanks to the observation of its power traces.

3.1 Attack explanation

ROLLO-I submission does not require the use of ephemeral keys, this means that
the encapsulation and decapsulation processes can be performed several times
using the same key pair ((x,y,F),h). The attack presented in this section leads
us to recover the private key sk = (x,y) that is used to establish the shared
secret between two entities.
Decapsulation process is a good target for side-channel attacks, indeed it involves
the secret key x during the syndrome computation

s = x · c mod Pn.

The second part of the secret key y may be recover by computing

y = x · h mod Pn,

with h the public key.
We note that ROLLO-I cryptosystem has not been proven IND-CCA2 implying
that we can give to the decapsulation process chosen ciphertexts. We then tar-
geted the syndrome’s support computation S that occurred in the RSR algorithm
described in Algorithm 5. The operation is performed by applying the Gaussian
elimination algorithm to the matrix associated to the syndrome s as described
in Algorithm 6 that highlights the points that could be seen as sources of leak-
age. Indeed, the two "if" conditions allow us to recover some bits by operating
a different treatment when the bit is 1 or 0.
The rank of the syndrome is at most r × d. In other words, at the end of the
process, we must have a matrix in row echelon form:

Ms =


s0,0 ∗ ∗ ∗ ∗ ∗
s1,0 s1,1 ∗ ∗ ∗ ∗
...

...
. . . ∗ ∗ ∗

sn−1,0 sn−1,1 · · · sn−1,r×d−1 ∗ ∗
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Algorithm 6: Gaussian elimination algorithm
Input: Matrix M ∈Mn,m(F2)
Output: Matrix under row echelon form

1 Dim ← 0
2 for i = 1 to m do
3 for j = 1 to n do
4 if Mj,i = 1 then
5 // The line j is a pivot
6 line i↔ line j
7 Dim ← Dim +1
8 break

9 for k = line i+ 1 to n do
10 if Mk,i = 1 then
11 line k ← line k + line i

12 return (M,Dim)

However, we can only consider the first column, recovering the other columns
should required some suppositions on coefficients, that are not processed during
the Gaussian elimination, to solve equation systems.
Thus, the attack can be realized by m rotations of the initial ciphertext that
will involve m rotations of the matrix Ms modulo Pm and thus allow us to
recover the syndrome. Specifically, we take a ciphertext that has been sent to
the decapsulation, after the ith decapsulation, we multiply the ciphertext by xi

modulo Pm.
It is straightforward to determine the first column since each pattern allows us
to directly recover the coefficient on each row of the matrix Ms.
Determining the first pivot amounts to find the first coefficient to 1 in the col-
umn. During the Gaussian elimination process, each coefficient in the column is
scanned and operation is performed or not according to the coefficient value. We
can distinguish two cases:

1. The first coefficient processed is 1, it is then the pivot, no operation is per-
formed and we can directly go to the second loop for (line 9 - Algorithm 6).
We can deduce that the first coefficient is 1.

2. The first coefficient is 0, so the algorithm consists in finding the first non-zero
coefficient in the column. Once the coefficient to 1 is found, the corresponding
line is exchanged with the pivot line. The time required to determine the
pivot indicates the number of coefficient processed and allows us to recover
the coefficient to 0 in the previous rows as well as the pivot line. In this case,
we go to the second loop for after the permutation of the two rows.

The second loop for (line 9 - Algorithm 6) allows to remove the other coefficients
to 1 in the column. Specifically, all the column is scanned from the pivot line
and two different treatments are performed on the other coefficients:

1. The coefficient is 0 and then no operation is performed.
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2. The coefficient is 1 and then an addition in F2m is performed between the
pivot row and the one processed.

This difference of treatment led us to determine on which row the coefficient
is 1 or 0. At this stage, we obtained a matrix Ms,0 in which we knew the first
column.
As explained before, the remaining coefficients can be recovered by a rotation of
the matrix before the Gaussian elimination process. This rotation is performed
by multiplying the ciphertext by xi ∈ F2[x]/(Pm), with 0 < i < m, inducing
m different matrices Ms,i that could be viewed as a rotation of the matrix
Ms,0 modulo Pm. The modular rotation has to be taken into account during
the recovering of the columns’ syndrome matrix. For example, considering the
ROLLO-I-128 parameters given in Table 3, multiplying the ciphertext by x
modulo Pm = x79 + x9 +1 implies that the last column of the matrix syndrome
is xored with the columns indexed by 0 and 9 as presented in Figure 3.

Fig. 3. Example of modular rotation for the syndrome’s matrix for ROLLO-I-128

The column 78 is recovered by applying the SPA as previously explained. To
recover the column 9, we had to multiply the ciphertext by x69 and be aware
that the recovering column corresponded to column 9 xored with column 78 that
is already known at this step of the attack. In the case of ROLLO-I-128, this
consideration concerns columns indexed by i with 1 ≤ i ≤ 9. The same is true
for ROLLO-I-256 and for ROLLO-I-192, columns indexed by i with 1 ≤ i ≤ 38
are concerned. The attack results are set out and discussed in the section 3.3.

3.2 Countermeasures

In this section, we focus on solutions allowing the cryptosystem to be secured
against the attack explained in the Section 3.1. The use of ephemeral keys or
an INC-CCA2 scheme would allow ROLLO-I to be resistant against the pro-
posed attack. But ROLLO-I has not be proven IND-CCA2 and the generation
of keys being generally performed once in the life cycle of a component then it
is complicated to consider the use of ephemeral keys on cryptosystems. We then
focus on protecting the Gaussian elimination algorithm by adding noise to the
leakage making it independent of the manipulating data. Two countermeasures,
as presented in Algorithm 7, can be adopted:

• Treat randomly the research of pivot in a column and the processed line for
the transformation in row echelon form.
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• Add dummies operations in the case in which the processed bit is 0.

Algorithm 7: Gaussian elimination with countermeasures
Input: Matrix M ∈Mn,m(F2)
Output: Matrix under row echelon form

1 Dim ← 0
2 Temp← 0
3 for i = 1 to m do
4 for j = 1 to n do
5 jrand = (j + random) mod n
6 if Mjrand,i = 1 then
7 // The line jrand is a pivot
8 line i↔ line jrand

9 Dim ← Dim +1
10 break

11 rand_line = random
12 for k = line i+ 1 to n do
13 krand = (k + rand_line) mod n
14 if Mkrand,i = 1 then
15 line krand ← line krand + line i

16 else
17 Temp← line krand + line i

18 return (M,Dim)

For the first countermeasure, an attacker will not be able to recover the indices
of the pivot and the first processed line. For example, for ROLLO-I-128, the
attacker will have 47 possibilities for the pivot and 46 possibilities for the index
of the first line processed for each columns. Then the complexity of the SPA
attack is (47× 46)79 which corresponds to about 2869 operations.
The second countermeasure complicates the SPA attack, in any case, an addition
in F2[x]/(Pm) is performed, then the attacker will not be able to distinguish the
treatment pattern of a bit to 1 or 0. The countermeasures required an additional
32-bit word to store the result in the case of a bit to 0.
We notice that side-channel attacks can be performed on the two countermea-
sures implemented separately. Indeed, in the first case, an attacker can replay
the same ciphertexts and recover the order of elements in a column and in the
second case, a Correlation Power Analysis (CPA) should be performed on the
addresses of registers in order to recover the treatment of a bit to 1 or 0. How-
ever, the combination of both complicates any attack, an attacker should not be
able to distinguish any pattern and the randomization added in the search of
the pivot and processed line disturbs the alignment of traces making the CPA
attack harder.
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3.3 Results

To develop this attack, we used the implementation on the microcontroller in
which all the operations in GF (2m) take advantage of the crypto co-processor.
For the experiment, we consider parameters of ROLLO-I-128, n = 47, m = 79.
The secret key x and ciphertext c involved in the syndrome computation have
been generated during the Key Generation and Encapsulation processes. As
expected, we observe in the trace given in Figure 4 the difference of patterns
between the treatment of a bit to 1 and a bit to 0 that led us to recover the first
column of the syndrome’s matrix corresponding to

1011010111010001010111001111001001110010110.

ROLLO-I-128 traces have been captured with a Lecroy SDA 725Zi-A oscillo-
scope.

Fig. 4. SPA performed on the first column during Gaussian elimination process

The same patterns appeared on the other columns after the matrix rotation al-
lowing us to recover the syndrome.
Figure 5 provides the trace of Gaussian elimination process with the implemen-
tation of countermeasures presented in Algorithm 7. We can observe that no
pattern can be distinguished and we are not able to know if the first operation
corresponds to the first row of the matrix.
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Fig. 5. Trace of the first column in Gaussian elimination process after application of
countermeasures

The countermeasures only impact the decapsulation process by increasing its
execution time as we can see on Table 9 that gives the number of cycles for
the three security level of ROLLO-I. Then, we can see in the Table that the
countermeasures’ implementation increases by about 30% the execution time of
the decapsulation process but it stays reasonable given the attack.

Decap
Security With countermeasures Without countermeasures

ROLLO-I-128 cycles (×106) 6.43 4.31
ms 128.6 86.3

ROLLO-I-192 cycles (×106) 12.54 7.8
ms 250.8 156

ROLLO-I-256 cycles (×106) 23.92 15.54
ms 478.4 310.8

Table 9. Executing time of ROLLO-I with countermeasures

Conclusion

In this paper, we highlighted that ROLLO-I can be implemented in a constrained
environment and by the structure used in the cryptosystem, the latter can even
benefit from actual crypto co-processor. We also shown that our implementation
can compete in terms of performances with existing algorithms such as ECDH.
Moreover we provided a first side-channel attack on ROLLO-I as well as coun-
termeasures against the proposed attack.
For future work, it will be interesting to look up some optimizations in time con-
cerning operations in Fqm [X]/(Pn) and also continue the study with ROLLO-II
and ROLLO-III.
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Appendix A Algorithm

In this section, we present in Algorithm 8 the inversion of binary polynomials in
F2[x]/(Pm) that we implemented and raised in Section 2.

Algorithm 8: Inversion in F2[x]/(Pm)

Input: a a non zero binary polynomial of degree at most m− 1
Output: a−1 mod Pm

1 u← a, v ← Pm

2 g1 ← 1, g2 ← 0
3 while u 6= 1 do
4 j ←− deg(u)− deg(v)
5 if j < 0 then
6 u↔ v
7 g1 ↔ g2
8 j ← −j
9 u← u+ xjv

10 g1 ← g1 + xjg2

11 return g1

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
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Appendix B Rank Support Recovery algorithm

In Algorithm 9, the support S is a subspace of EF given by:

EF = 〈{ef, e ∈ E and f ∈ F}〉 ,

with Rank(E) = r and Rank(F ) = d, then dim(S) ≤ rd.
In the RSR algorithm, the loop for (line 4 - Algorithm 9) allows to recover the
whole vector space EF in case of dim(S) < rd.
For the failure analysis, we let the lecturer refers to [3].
Once S = 〈EF 〉 = 〈e1f1, · · · , erf1, · · · , e1fi, · · · erfi, · · · , erfd〉 , since Si = f−1i S,
we have for all 1 ≤ i ≤ d,

E ⊂ Si ⇒ E =
⋂

1≤i≤d

Si.

In rank metric code-based cryptography, the support recovery is considered as a
hard problem, ROLLO bases a part of its security proof on the 2-Ideal Rank
Support Recovery (2-IRSR) [3] problem that consists in, given a polynomial
P ∈ Fq[X] of degree n, vectors x and y in Fn

qm , and a syndrome s, recovering
the support E of (e1, e2) with dim(E) ≤ r and such that:

e1x+ e2y = s mod P.

Algorithm 9: Rank Support Recovery (RSR) algorithm
Input: A Fq-subspace F = 〈f1, · · · , fd〉, s = (s1, · · · , sn) a syndrome of an error

e, r the error’s rank weight
Output: A candidate E for the support of e

1 Compute the support S of the syndrome s

2 Precompute every Si = f−1
i S for i = 1 to d

3 Precompute every Si,i+1 = Si

⋂
Si+1 for i = 1 to d− 1

4 for i = 1 to d− 2 do
5 tmp← S + F (Si,i+1 + Si+1,i+2 + Si,i+2)
6 if dim(tmp) ≤ rd then
7 S ← tmp
8 end
9 end

10 E ←
⋂

1≤i≤d

f−1
i S

11 return E
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